Inhibition of K+ Transport through Na+, K+-ATPase by Capsazepine: Role of Membrane Span 10 of the α-Subunit in the Modulation of Ion Gating
نویسندگان
چکیده
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملSELECTIVE TRANSPORT AND EXTRACTION OF ALKALI METAL CATIONS (Na & K ) THROUGH CHLOROFORM LIQUID MEMBRANE BY DIETHYLENE GLYCOL MONOBUTYL ETHER AND DIETHYLENE GLYCOL DIBUTYL ETHER
A liquid membrane containing diethylene glycol monobutyl ether (2) shows specificity for K ion in transport while diethylene glycol dibutyl ether (1) was selective for Na over K . As an extractant, ligand 2 exhibited pronounced extraction selectivity for K over Na in comparison with ligand 1
متن کاملA New Method to Estimate Inhibition Percentage of Endogenous Digitalis in Patients with Pre-eclampsia
Background: Pre-eclampsia is an idiopathic pregnancy disorder characterized by appearance proteinuria and hypertension, with poorly understood etiology. It has been linked to a variety of system abnormalities, including ion transport disorders in neonatal, maternal, and placental cell lines. A new method was described to evaluate the inhibition percentage of endogenous digitalis in plasma of pr...
متن کاملThe role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node
Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...
متن کاملThe Role of Na,k-Atpase α Subunit Serine 775 and Glutamate 779 in Determining the Extracellular K+And Membrane Potential–Dependent Properties of the Na,k -Pump
The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K-ATPase alpha subunit, in determining the voltage and extracellular K+ (K+(o)) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the alpha1 subunit of sheep Na,K-ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ ...
متن کامل